

Antibody Drug Conjugates in Cancer

Hossein Borghaei, MS, DO

Professor and Chief, Thoracic Oncology

The Gloria and Edmund M. Dunn Chair in Thoracic Oncology

Woo U, 2022

Conflicts:

Research Support (Clinical Trials):

Millennium, Merck/Celgene, BMS/Lilly

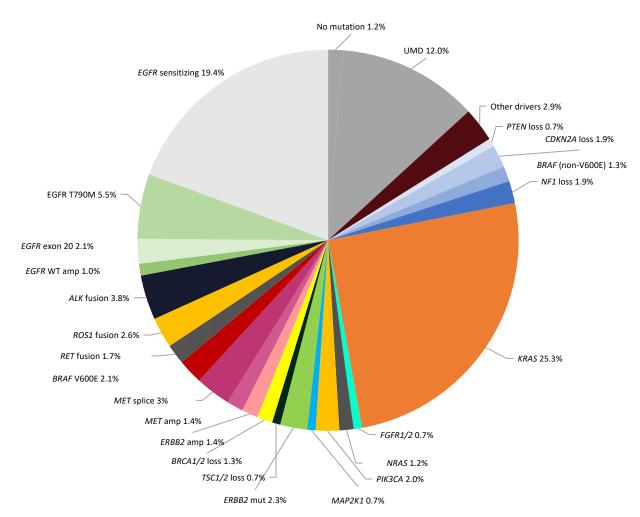
Advisory Board/Consultant:

BMS, Lilly, Genentech, Pfizer, Merck, EMD-Serono, Boehringer Ingelheim, Astra Zeneca, Novartis, Genmab, Regeneron,
 BioNTech, Amgen, Axiom, PharmaMar, Takeda, Mirati, Daiichi, Guardant, Natera, Oncocyte, Beigene, iTEO, Jazz, Janssen,
 Da Volterra, Kriya

Scientific Advisory Board:

Sonnetbio (Stock Options), Rgenix (Stock Options), Nucleai (Stock options)

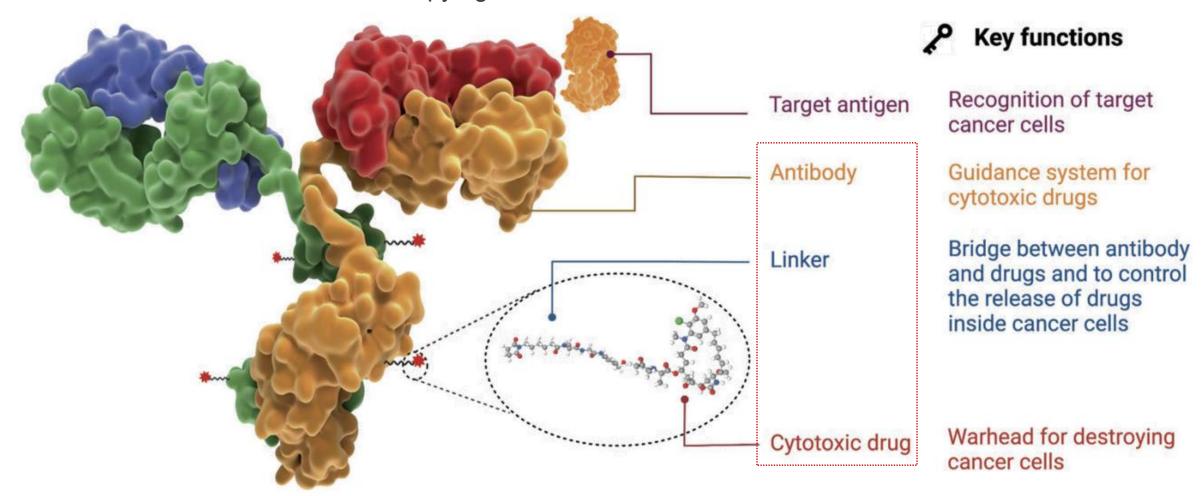
Data and Safety Monitoring Board:


University of Pennsylvania, CAR T Program, Takeda, Incyte

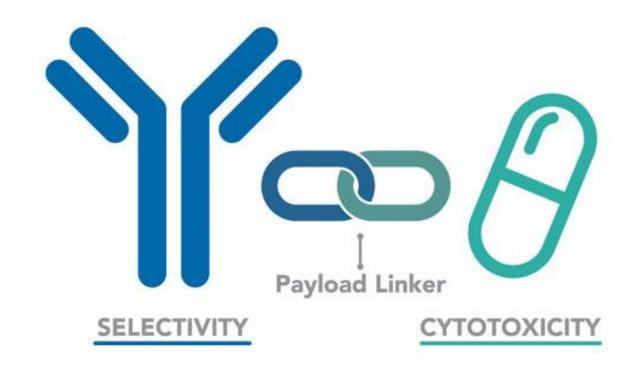
Employment:

Fox Chase Cancer Center

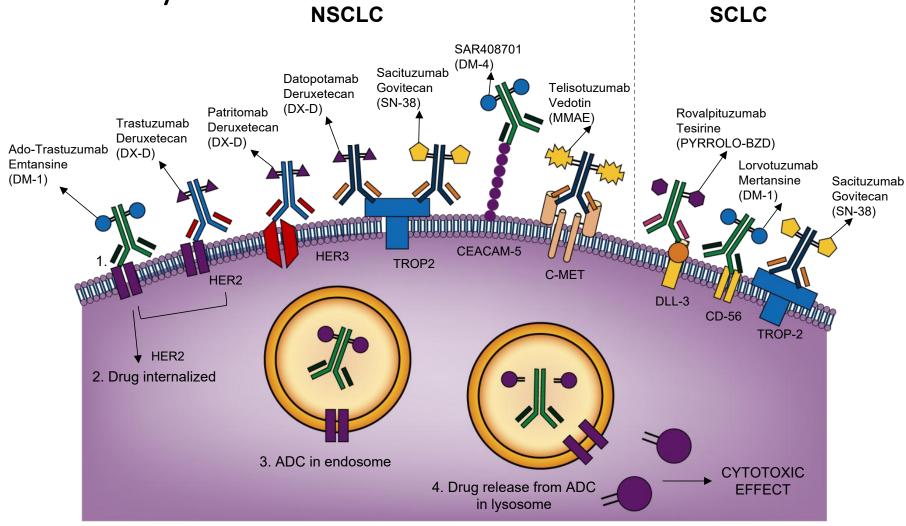
Biomarker Testing Demands and Targeted Therapy Options for Lung Adenocarcinoma Continue to Expand

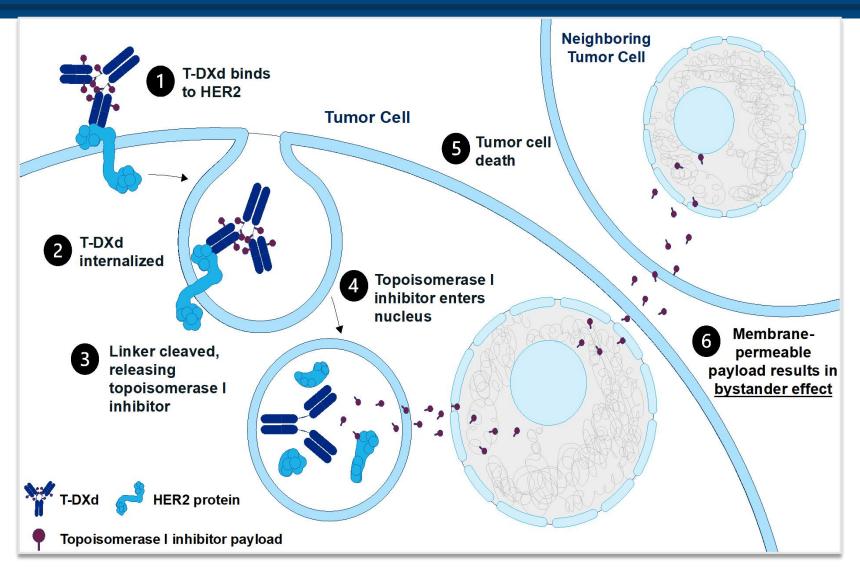

Target	Approved Drugs
EGFR (common mutations)	Gefitinib, erlotinib, afatinib, dacomitinib, osimertinib, erlotinib/ramucirumab
EGFR (exon 20)	Amivantamab, mobocertinib
ALK	Crizotinib, ceritinib, alectinib, brigatinib, lorlatinib
ROS1	Crizotinib, entrectinib
RET	Selpercatinib, pralsetinib
NTRK1/2/3	Larotrectinib, entrectinib
BRAF V600E	Dabrafenib + trametinib
MET exon 14	Capmatinib, tepotinib
KRAS G12C	Sotorasib

Jordan et al. Cancer Discov. 2017;7:596-609.


Slide: PeerView.com

Antibody–Drug Conjugates (ADCs): What Are They?¹


 Unlike conventional chemotherapy treatments, which can damage healthy cells, ADCs are targeted medicines that deliver chemotherapy agents to cancer cells


What is an ADC?

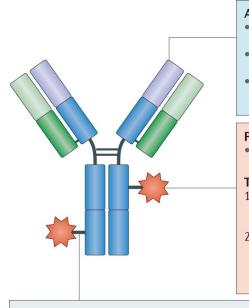
Landscape of Antibody—Drug Conjugates Under Study in Lung Cancer¹

T-DXd MOA and Bystander Effect¹⁻³

^{1.} Modi S et al. *J Clin Oncol.* 2020;38:1887-1896. 2. Nakada T et al. *Chem Pharm Bull (Tokyo)*. 2019;67:173-185.

^{3.} Ogitani Y et al. *Clin Cancer Res.* 2016;22:5097-5108.

Bystander Effect of T-DXd Versus T-DM1¹


T-DXd, 3.0 mg/kg Control **T-DM1**, 10 mg/kg Co-culture of HER2+ and HER2- tumors in vivo HER2- cells still persist Both HER2+ and HER2- are impacted HER2-HER2-**Tumor regression** HER2+ cells cells cells **MDA-MB-468 MDA-MB-468**

1. Ogitani Y et al. *Cancer Sci.* 2016;107:1039-1046.

NCI-N87

Slide by PeerView

Components of an ADC

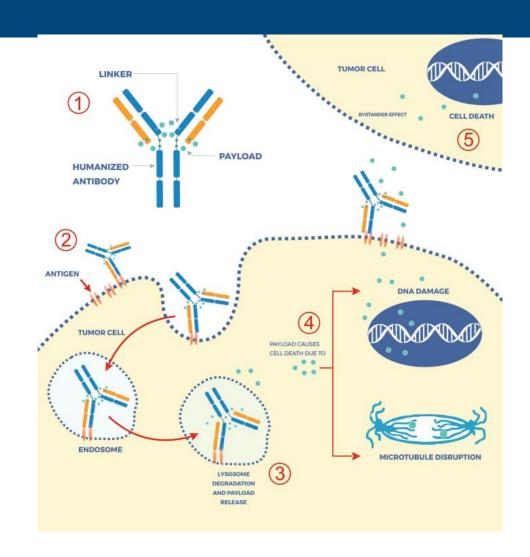
Antibody

- Human or humanized (IgG1, IgG2, IgG4) for lower immunogenicity
- High specificity minimizes the risk of off-target effects
- Formation of antibody–antigen complexes leads to internalization

Payload

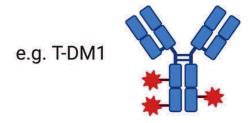
Highly potent cytotoxic compounds typically derived from natural sources

Two main types:


- 1. Microtubule inhibitors: maytansines and auristatins, as used in trastuzumab emtansine, brentuximab vedotin
- 2. DNA damaging agents: calicheamicins, anthracyclines, duocarmycins or pyrrolobenzodiazepines, as used in gemtuzumab ozogamicin or inotuzumab ozogamicin

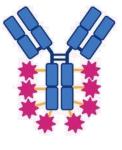
Linker

- Conjugates the payload to the antibody
- Should remain stable in the circulation while allowing selective intracellular release


Two main types:

- Cleavable: acid labile, disulfide or enzyme dipeptide, as used in gemtuzumab ozogamicin or inotuzumab ozogamicin
- 2. Non-cleavable: thioether, hindered disulfide, as used in trastuzumab emtansine

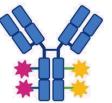
Evolution of ADCs


First generation ADCs

-New linker technologies (↑DAR);
 -improved conjugation chemistry;
 -membrane-permeable payloads

Next-generation ADCs

- 1 therapeutic index
- bystander effect;
- 1 tissue agnostic profile.

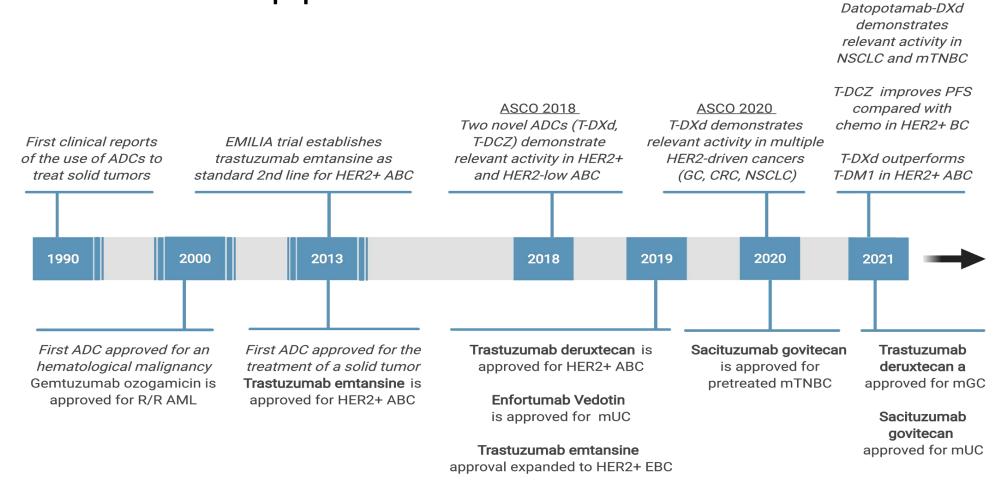

e.g. T-DXd

Future Perspectives


1) Bispecific ADCs

2) Dual-payload ADCs

3) ADCs with immune-stimulating payloads



(e.g. TLR8 agonist)

4) Radionuclide ADCs

ADCs- FDA Approvals

ADC Targets of Interest in NSCLC and other Malignancies

HER2

- Human epidermal growth factor receptor 2
- Activating mutations occur in 2-3% of NSCLCs

HER3

- Human epidermal growth factor receptor 3
- Overexpression shown in many cancer types

TROP2

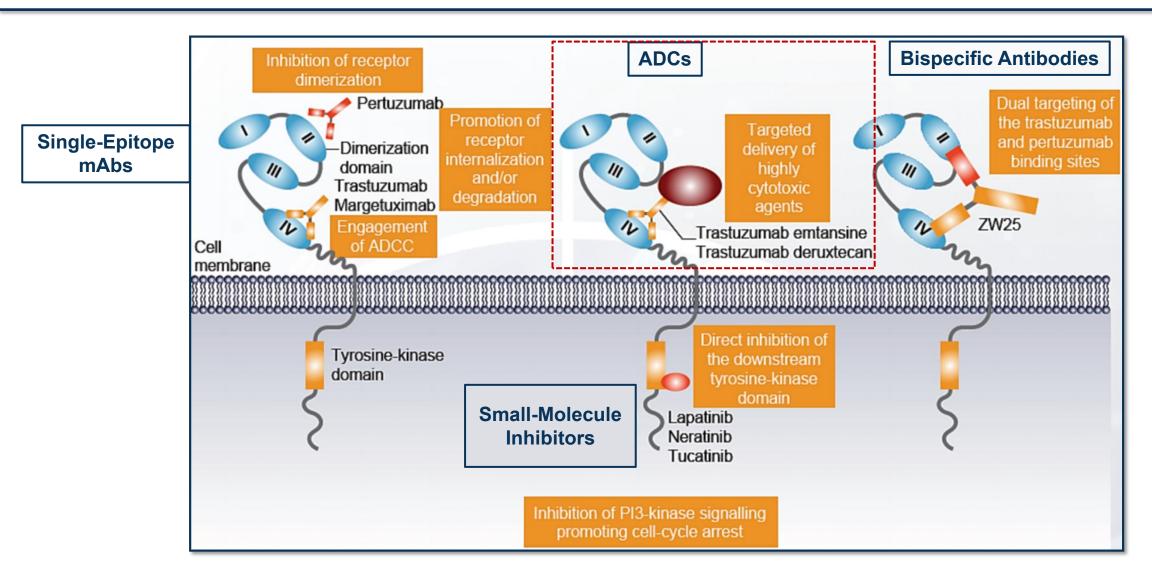
- Transmembrane glycoprotein located on chromosome 1
- Overexpressed in multiple human epithelial cancers

CEACAM5

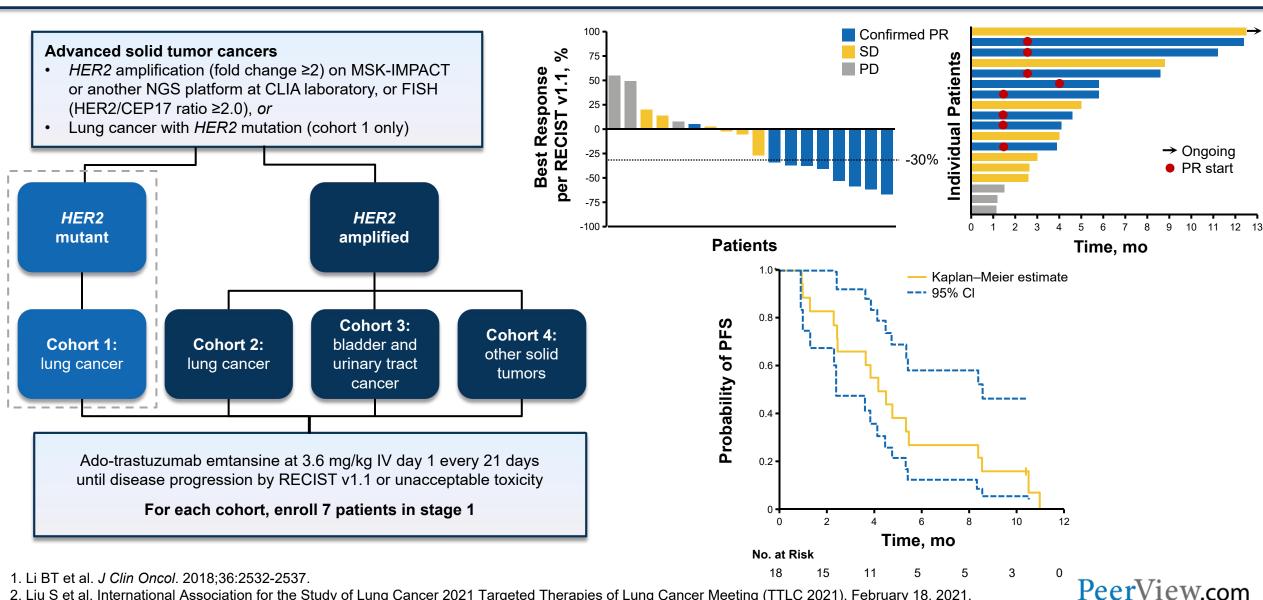
• Carcinoembryonic antigen-related cell adhesion molecule 5, aka cancer carcinoembryonic antigen

c-MET

- Tyrosine kinase receptor
- Signaling stimulates oncologic processes like cell motility, invasion, and metastasis

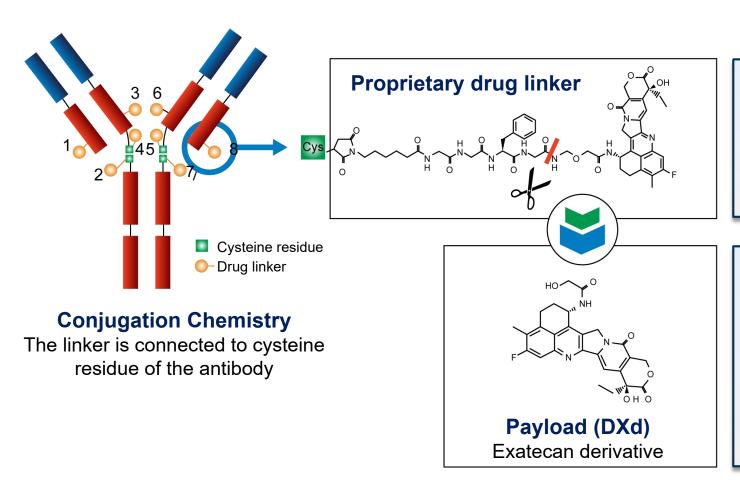

Components of Select ADCs - What's the Difference?

Target	ADC	mAb	Linker	Payload	DAR
HER2	Trastuzumab deruxtecan	Trastuzumab	Cleavable	Deruxtecan	8
TROP2	Datopotamab deruxtecan	Datopotamab	Cleavable	Deruxtecan	4
	Sacituzumab govitecan	Sacituzumab	Cleavable	SN-38	7.6
HER3	Patritumab deruxtecan	Patritumab	Cleavable	Deruxtecan	8
CEACAM5	Tusamitamab ravtansine	Tusamitamab	Cleavable inside cells	Maytansinoid DM4	3.8
c-MET	Telisotuzumab vedotin	Telisotuzumab	Cleavable	Monomethyl auristatin E	3.1


Toxicities Associated with ADCs

Hematologic: Constitutional: GI: Nausea, Thrombocytopenia, vomiting, diarrhea fevers, fatigue Anemia Ocular: **Pneumonitis** LFTs Keratopathy Peripheral Alopecia neuropathy

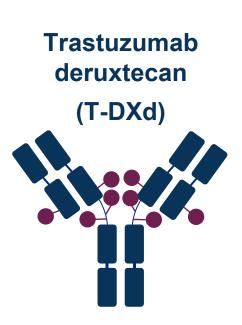
Mechanism of Action of HER2-Targeting Therapies: Focus on ADCs¹



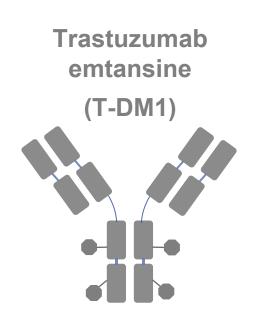
Ado-Trastuzumab Emtansine (T-DM1) in *HER2*-Mutated NSCLC^{1,2}

^{2.} Liu S et al. International Association for the Study of Lung Cancer 2021 Targeted Therapies of Lung Cancer Meeting (TTLC 2021). February 18, 2021.

Novel Anti-HER2 ADC: Trastuzumab Deruxtecan (T-DXd; DS-8201a)



- ADC composed of three components
 - Humanized HER2-targeted mAb
 - Topoisomerase I inhibitor "payload"
 - Tetrapeptide-based cleavable linker


- High drug-to-antibody ratio (≈8:1)
- High potency payload that is membrane-permeable → nearby cells in tumor targeted regardless of HER2 expression ("bystander antitumor effect")

Characteristic Differences Between T-DXd and T-DM1¹⁻⁵

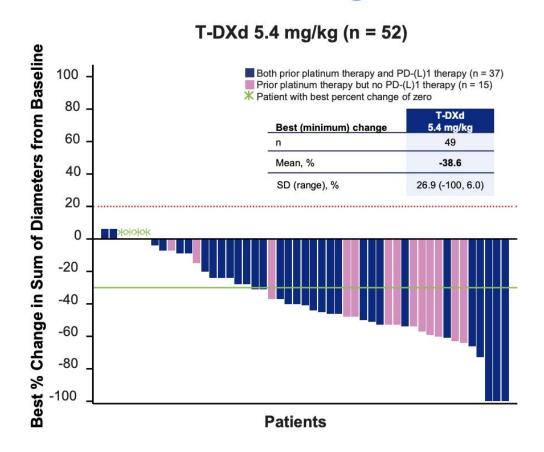
HER2-Targeting ADCs With a Similar mAB Backbone

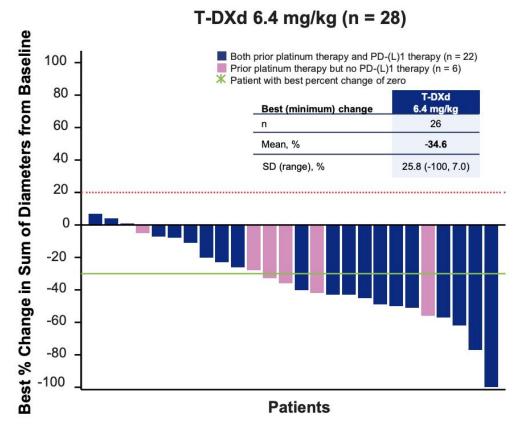
T-DXd	ADC Attributes	T-DM1
Topoisomerase I inhibitor	Payload MoA	Anti-microtubule
~8:1	Drug-to-antibody ratio	~3.5:1
Yes	Tumor-selective cleavable linker?	No
Yes	Evidence of bystander antitumor effect?	No

^{1.} Nakada T et al. Chem Pharm Bull (Tokyo). 2019;67:173-85. 2. Ogitani Y et al. Clin Cancer Res. 2016;22:5097-108.

Response by BICR – 90-Day Follow Up (June 22, 2022 DCO for T-DXd 5.4 mg/kg arm)

	Prespecified early cohort T-DXd 5.4 mg/kg n = 52			
Response Assessment by BICR	DCO: March 24, 2022	DCO: June 22, 2022		
Confirmed ORR, ^a % (95% CI)	53.8 (39.5, 67.8)	57.7 (43.2, 71.3)		
Complete response, %	1.9	1.9		
Partial response, %	51.9	55.8		
Median DoR, ^b months (95% CI)	NE (4.2, NE)	8.7 (7.1, NE)		

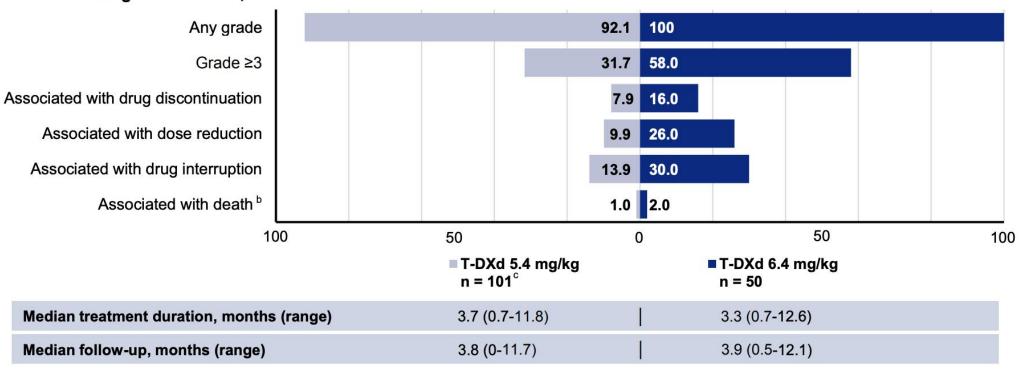

- As the median DoR for the T-DXd 5.4 mg/kg dose arm was not reached at the March 24, 2022 cutoff, an additional 90-day follow-up response analysis was conducted
 - Median DoR was reached with the additional follow-up response analysis
 - Confirmed ORR by BICR continued to demonstrate strong and clinically meaningful antitumor activity



^aProportion of patients with confirmed CR or PR assessed by BICR per RECIST v1.1. ORR 95% CI was calculated using the Clopper-Pearson method. ^bMedian DoR was based on Kaplan-Meier estimate. 95% CI was calculated using the Brookmeyer-Crowley method.

Best Percent Change in Tumor Size by BICR

Data cutoff: Mar 24, 2022.


The red line at 20% indicates progressive disease, and the green line at -30% indicates a partial response.

Overall Safety Summary

Safety analysis set^a

Drug-related TEAE, %

a The safety analysis set included all randomized patients who received ≥1 dose of study drug. In the safety analysis set, 6 patients overall had a TEAE associated with an outcome of death (2 drug-related deaths); 4 of the patients received T-DXd 5.4 mg/kg of whom 2 had malignant neoplasm progression, 1 had malignant lung neoplasm, and 1 had pneumonitis which was subsequently adjudicated by the adjudication ILD committee as not ILD; of the 2 patients who received T-DXd 6.4 mg/kg, 1 had a generally abnormal physical condition and 1 had ILD which was later confirmed by the ILD adjudication committee. In the 5.4 mg/kg arm was randomized but did not receive treatment before discontinuing from the study.

TEAE, treatment-emergent adverse event.

Adjudicated Drug-Related ILD

	Safety analysis set ^b		
Adjudicated as drug-related ILD ^a	T-DXd 5.4 mg/kg n = 101	T-DXd 6.4 mg/kg n = 50	
Any grade, n (%)	6 (5.9)	7 (14.0)	
Grade 1	3 (3.0)	1 (2.0)	
Grade 2	2 (2.0)	6 (12.0)	
Grade 3	1 (1.0)	0	
Grade 4	0	0	
Grade 5	0	0	
Cases resolved, n (%)	3 (50.0)	1 (14.3)	
Median time to onset of first adjudicated ILD, days (range)	67.5 (40-207)	41.0 (36-208)	

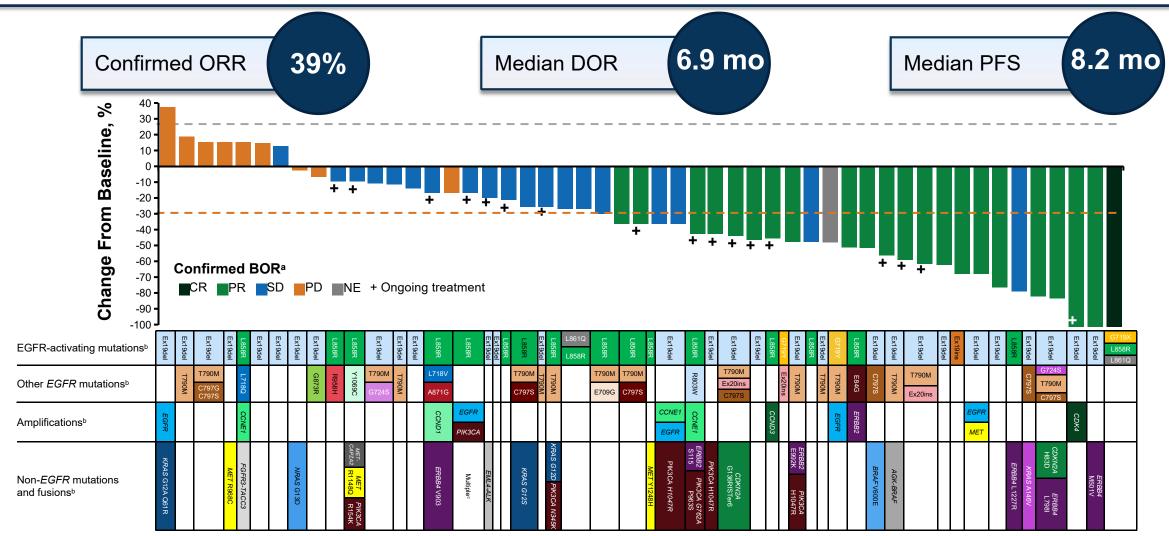
- The rate of adjudicated drug-related ILD was lower in the T-DXd 5.4 mg/kg arm compared with the 6.4 mg/kg arm
- Most cases of adjudicated drug-related ILD were low grade (grade 1/2)

Data cutoff: Mar 24, 2022.

^aCases of potential ILD or pneumonitis were evaluated by an independent adjudication committee. Data shown here are for cases that were deemed drug related by the ILD adjudication committee.

^bIn the safety analysis set, 1 investigator-reported grade 3 ILD event in the 5.4 mg/kg arm and 1 investigator-reported grade 5 ILD event in the 6.4 mg/kg arm pending adjudication at the data cutoff were subsequently adjudicated as drug-related grade 2 and grade 5 ILD, respectively.

New and First FDA Approval for *HER2*-mutant NSCLC


On August 11, 2022, the FDA granted accelerated approval to fam-trastuzumab deruxtecan-nxki for adult patients with unresectable or metastatic NSCLC whose tumors have activating *HER2* (*ERBB2*) mutations, as detected by an FDA-approved test, and who have received a prior systemic therapy. This is the first drug approved for *HER2*-mutant NSCLC.

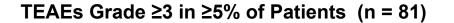
FDA also approved the Oncomine™ Dx Target Test (tissue) and the Guardant360® CDx (plasma) as companion diagnostics for trastuzumab deruxtecan. If no mutation is detected in a plasma specimen, the tumor tissue should be tested.

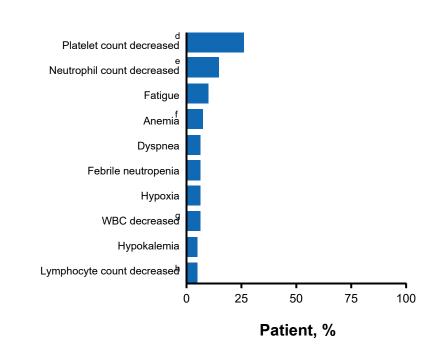
Patritumab Deruxtecan (HER3-DXd; U3-1402): Novel Anti-HER3 ADC¹

Patritumab (Anti-HER3 Antibody) **Proprietary drug linker** Cysteine residue - Drug linker **Conjugation chemistry** The linker is connected to cysteine residue of the antibody Payload (DXd) Exatecan derivative

HER3-DXd Demonstrated Activity in Patients With Diverse Mechanisms of EGFR TKI Resistance^{1,2}

^a Six patients had BORs of NE due to no adequate postbaseline tumor assessment and are not shown; 1 had BOR of NE due to SD too early (<5 weeks) and is shown in gray.


^b Genomic alterations known to be associated with EGFR TKI resistance identified in assays of tumor tissue/ctDNA in blood; collected prior to treatment with HER3-DXd.

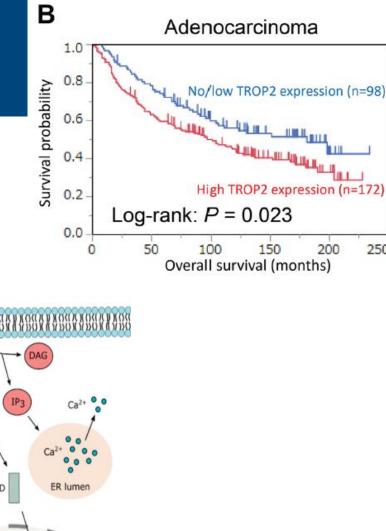

c CDKN2A A143V; PIK3CA E542K, E545K, E726K; ERBB2 K200N; ERBB3 Q847*, Q849*. Data cutoff: September 24, 2020.

^{1.} Janne P et al. ASCO 2021. Abstract 9007. 2. Janne P et al. Cancer Discov. 2022;12:74-89.

HER3-DXd Was Associated With a Manageable Safety Profile and a Low Rate of Discontinuation Due to AEs^{1,2}

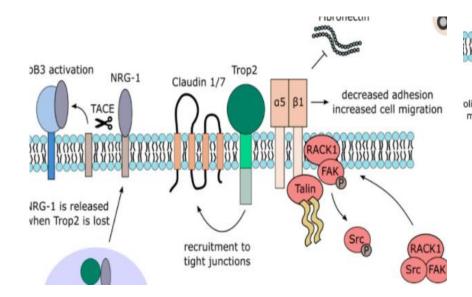
TEAEs, n (%) Median Treatment Duration: 5.7 (Range, 0.7-28.3), mo	5.6 mg/kg (n = 57)	All Doses (N = 81)
Any TEAE, n (%)	57 (100)	81 (100)
Associated with treatment discontinuation ^a	6 (11)	7 (9)
Associated with treatment dose reduction	12 (21)	18 (22)
Associated with treatment dose interruption	21 (37)	30 (37)
Associated with death ^b	4 (7)	5 (6)
Grade ≥3 TEAE, n (%)	42 (74)	52 (64)
Treatment-related TEAE, n (%)	55 (96)	78 (96)
Associated with death	0	0
Grade ≥3	31 (54)	38 (47)
Serious TEAE	12 (21)	15 (19)
ILDc	4 (7)	4 (5)
Grade 1	2 (4)	2 (2)
Grade 2	1 (2)	1 (1)
Grade 3	1 (2)	1 (1)
Grade 4/5	0	0

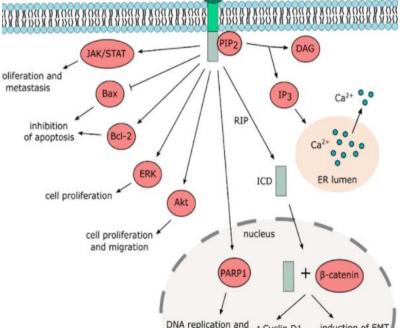
- The rate of adjudicated treatment-related interstitial lung disease was 5%; none were grade 4/5
- Median time to adjudicated onset of treatment-related interstitial lung disease was 53 (range, 13-130) days


1. Janne P et al. ASCO 2021. Abstract 9007. 2. Janne P et al. Cancer Discov. 2022;12;74-89.

^a TEAEs associated with treatment discontinuation were fatigue (2); nausea, decreased appetite, interstitial lung disease, neutrophil count decreased, pneumonitis, and upper respiratory tract infection; none were for thrombocytopenia (1 each). TEAEs associated with death were: disease progression (2), respiratory failure (2), and shock (1). One additional occurrence of grade 5 ILD was determined by adjudication to be unrelated to study treatment. d Includes thrombocytopenia. Includes neutropenia. Includes hemoglobin decreased. Includes leukopenia. Includes lymphopenia. Data cutoff: September 24, 2020. PeerView.com

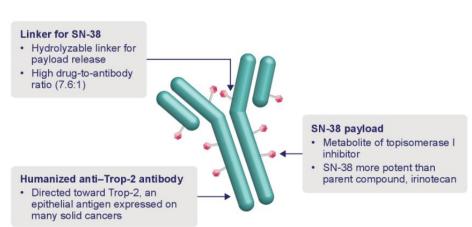
TROP2

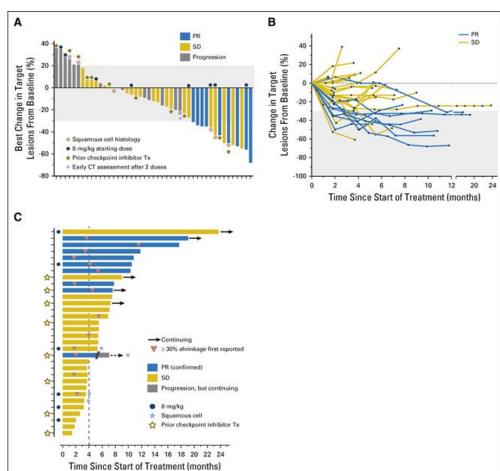

TROP2, a transmembrane glycoprotein, is highly expressed in NSCLC and other solid tumors1-5


High TROP2 expression is associated with poor prognosis, making it a promising therapeutic target⁶

200

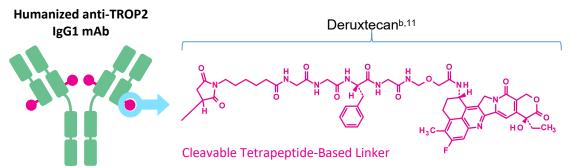
250




IGF-1

Lenart et al, Cancers 2020 Inamura et al. Oncotarget 2018 Jiang et al. Oncol Lett 2013

Sacituzumab govitecan


Results from IMMU-132-01 Single-arm expansion in 2L+ NSCLC

	NSCLC
Total, n	54
Dose (mg/kg)	8, 10, 12 ^b
ORR, % (95% CI)	16.7 (7.9-29.3)
CR, n (%) PR, n (%)	0 9 (16.7)
SD, n (%)	22 (40.7)
Median DOR, months, (95% CI)	6.0 (2.5-21.0)
Median OS, months, (95% CI)	7.3 (5.6-14.6)
Median PFS, months (95% CI)	4.4 (2.5-5.4)
CBR, n (%) [95% CI]	13 (24.1) [13.5-37.6]

Datopotamab Deruxtecan (Dato-DXd; DS-1062)

Topoisomerase I Inhibitor Payload (DXd)

Designed With 7 Key Attributes:

- Payload mechanism of action: topoisomerase I inhibitor a,7
- High potency of payload a,8
- Optimized drug to antibody ratio ≈4 a,c,7
- Payload with short systemic half-life a,c,8
- Stable linker-payload a,8
- Tumor-selective cleavable linker a,8
- Bystander antitumor effect a,8,12

Figure 2. Study Design

Key inclusion criteria Dose escalation¹³ Dose expansion^c Relapsed/refractory 50 patients at 4 mg/kg advanced/metastatic NSCLC **Primary objectives** Dato-DXd 0.27 mg/kg Unselected for TROP2 to 10 mg/kg Q3Wb Establish MTD, safety, expression^a 50 patients at 6 mg/kg tolerability Aged ≥18 (US) or ≥20 (Japan) MTD established: Secondary objectivesd years 8 mg/kg Q3W ECOG PS 0-1 Efficacy,e PK Measurable disease per **RECIST version 1.1** Data cutoff, January 8, 2021

Stable, treated brain metastases allowed

TROPION PanTumor01

NSCLC Cohort

Table 4. Best Overall Response (BICR)

		Dato-DXd Dose	
Patients ^a	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)
ORR, n (%)	12 (24)	13 (26)	19 (24)
CR/PR	10 (20)	11 (22)	19 (24)
CR/PR (too early to be confirmed)	2 (4)	2 (4)	0
DCR, n (%)	38 (76)	35 (70)	64 (80)
PD, n (%)	7 (14)	10 (20)	7 (9)
DOR, median (95% CI), mo	NE (2.8-NE)	10.5 (4.1-NE)	9.0 (5.8-NE)
PFS, median (95% CI), mob	4.3 (3.5-8.4)	6.9 (2.7-8.8)	5.2 (4.1-7.1)

BICR, bilinded independent central review; CR, complete response; DCR, disease control rate; DOR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response.

*Includes response evaluable patients who had a1 postbaseline tumor assessment or discontinued treatment. Median PFS was limited by immature duration of follow-up in the 4- and 6-mg/kg dosing cohorts.

Figure 4. Best Change in Sum of Diameters (BICR)

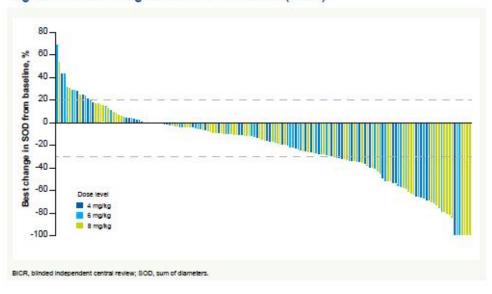
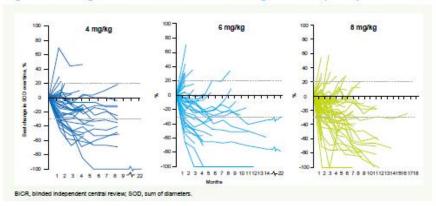



Figure 5. Change in Sum of Diameters for Target Lesion (BICR) Over Time

TROPION-PanTumor01: Safety¹

- Overall, manageable safety profile and no new safety signals observed
- Some AEs (eg, GI toxicity and anemia) may be reversible; clinical course of AEs will be further analyzed

Overall Safety Sumr		Dato-DXd Dose		
Patients, n (%)	4 mg/kg (n = 50)	6 mg/kg (n = 50)	8 mg/kg (n = 80)	
TEAE	49 (98)	49 (98)	80 (100)	
Grade ≥3	15 (30)	27 (54)	46 (58)	
Drug-related TEAE	47 (94)	41 (82)	78 (98)	
Grade ≥3	7 (14)	13 (26)	28 (35)	
Serious TEAE	10 (20)	24 (48)	40 (50)	
Grade ≥3	10 (20)	18 (36)	37 (46)	
Dose adjustments				
TEAEs associated with discontinuation	8 (16)	7 (14)	19 (24)	
TEAEs associated with dose interruption	4 (8)	15 (30)	29 (36)	
TEAEs associated with dose reduction	1 (2)	5 (10)	23 (29)	
ILD adjudicated as drug related ^a	5 (10)	3 (6)	11 (14)	
Grade ≤2	4 (8)	2 (4)	7 (9)	
Grade 3/4	1 (2)	1 (2)	1 (1)	
Grade 5	0	0	3 (4)	

Nausea Stomatitis Alopecia Fatigue Vomiting Decreased appetite Constipation Infusion-related reaction Anemia Anemia Anemia Anemia

Dry eye

Cough
Diarrhea

Dyspnea

Mucosal inflammation

TEAEs in ≥15% of Patients^b

30

Patients, %

20

8 mg/kg

70

60

Grade

1-2 ZZZ ≥3

50

in the 8 mg/kg cohort (2 grade 1, 5 grade 2, 1 grade 3, 3 grade 5). b Of 180 patients (4 mg/kg [n = 50]; 6 mg/kg [n = 50]; 8 mg/kg [n = 80]). Data cutoff: April 6, 2021.

^a Cases of ILD adjudicated as drug related comprised 5 patients in the 4 mg/kg cohort (1 grade 1, 3 grade grade 4), and 11 patients

^{1.} Garon EB et al. WCLC 2021. Abstract MA03.02.

TROPION-Lung02

Key eligibility

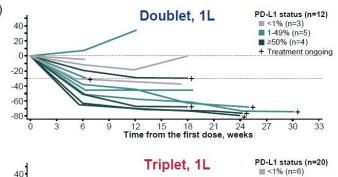
- Advanced/metastatic NSCLC
- Dose confirmation^b: ≤2 lines of prior therapy^c
- Dose expansion
- ≤1 line of platinum-based CT (cohorts 1 and 2)^c
- No prior therapy (cohorts 3-6)^c

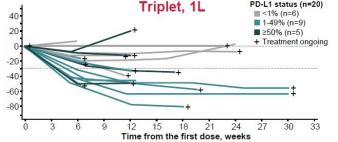
	Dato-DXd IV Q3W	+	pembro IV Q3W	+	platinum CT IV Q3W
Cohort 1 (n=20)d:	4 mg/kg	+	200 mg		"Doublet"
Cohort 2 (n=20)d:	6 mg/kg	+	200 mg		– "Doublet"
Cohort 3 (n=17)d:	4 mg/kg	+	200 mg	+	carboplatin AUC 5
Cohort 4 (n=20)d:	6 mg/kg	+	200 mg	+	carboplatin AUC 5
Cohort 5 (n=7)d:	4 mg/kg	+	200 mg	+	cisplatin 75 mg/m ²
Cohort 6 (n=4)d:	6 mg/kg	+	200 mg	+	cisplatin 75 mg/m ²

- Primary objectives: safety and tolerability
- Secondary objectives: efficacy, pharmacokinetics, and anti-drug antibodies

"Triplet"

In the overall population:

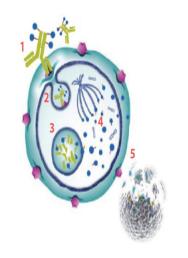

ORRs (confirmed + pending) of 37% and 41% were seen with doublet (n=38) and triplet (n=37) therapy, respectively; both groups had 84% DCR


BOR With 1L Therapy For Advanced NSCLCa,b

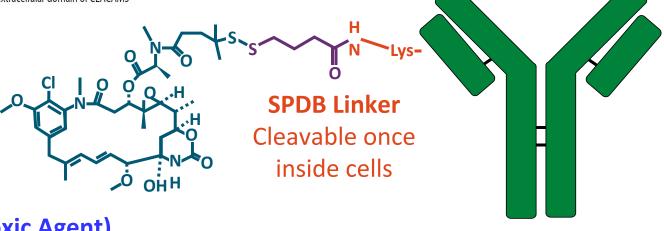
Response, n (%)	Doublet (n=13)	Triplet (n=20)
ORR confirmed + pending	8 (62%)	10 (50%)
CR	0	0
PR confirmed	8 (62%)	7 (35%)
PR pending	0	3 (15%)
SD	5 (39%)	8 (40%)
DCR	13 (100%)	18 (90%)

- As 1L therapy, the doublet and triplet yielded ORRs (confirmed + pending) of 62% and 50%, respectively
- As 2L+ therapy, respective ORRs (confirmed + pending) were 24% and 29%

Percent Change in Sum of Diameters^a



Targeting CEACAM5: ADC SAR408701 (Tusamitamab ravtansine)



CEACAM5 (carcinoembryonic antigen-related adhesion molecule 5)
 overexpressed in multiple malignancies, including nonsquamous NSCLC^{1,2}

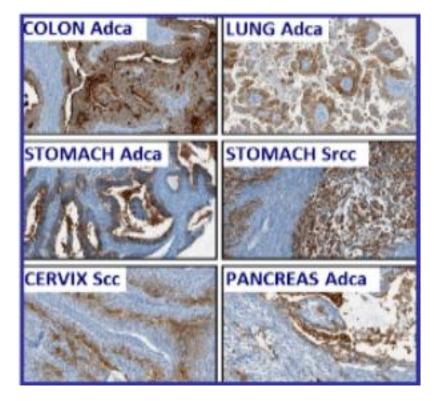
SAR408701 Structure¹

- 1 Antibody portion of tusamitamab ravtansine binds to extracellular domain of CEACAM5
- (2) Internalization of tusamitamab ravtansine
- Release of DM4 into the tumor cell
- 4 Inhibition of microtubule assembly
- Cell cycle arrest and apoptosis

DM4 (Cytotoxic Agent)

maytansinoid derivative ravtansine

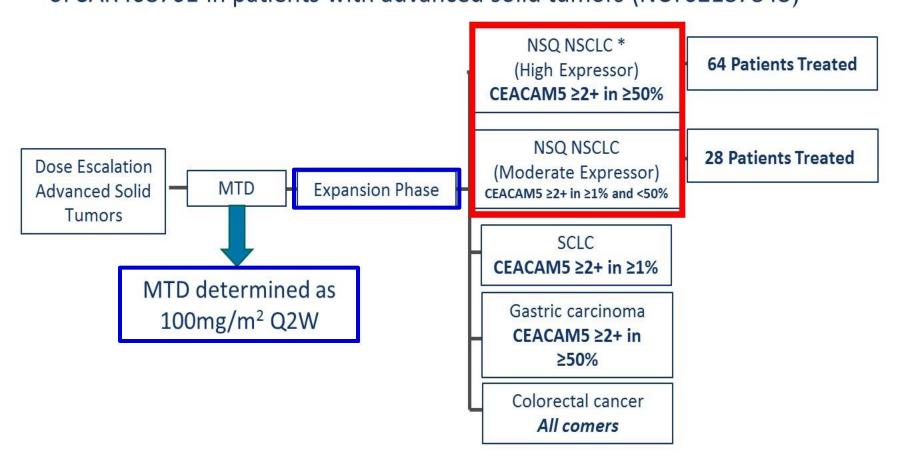
inhibiting tubulin polymerization


Humanized AbTargets CEACAM5

Average Drug Antibody Ratio (DAR) of 3.8

Tusamitamab ravtansine is being developed for antitubulin-sensitive tumors

with high CEACAM5 expression


Cancer type	Population with high CEACAM5 expression*	1L metastatic incidence (thousands, US)	Antitubulin sensitive	
Gastric adenocarcinoma	25-30%	12	Yes	
NSCLC adenocarcinoma	20-30%	74	Yes	
Pancreatic adenocarcinoma	10-20%	27	Yes	
Metastatic breast cancer	5-15%	39	Yes	
Colorectal adenocarcinoma	80-90%	44	No	

CEACAM5 is expressed with significant frequency and intensity in several cancer types

Expansion Phase of tusamitamab ravtansine (MTD 100mg/m² Q2W) in NSCLC

A first-in-human study for the evaluation of the safety, PK and antitumor activity of SAR408701 in patients with advanced solid tumors (NCT02187848)

Primary endpoints: DLT (escalation phase), overall response rate (ORR; expansion phase) **Secondary endpoints**: Safety, recommended Phase 2 dose identification, duration of response (DOR)

*High Expressor NSCLC – 2 interim analyses (at first 15 treated patients and at first 30 treated patients)

Expansion Phase in NSCLC

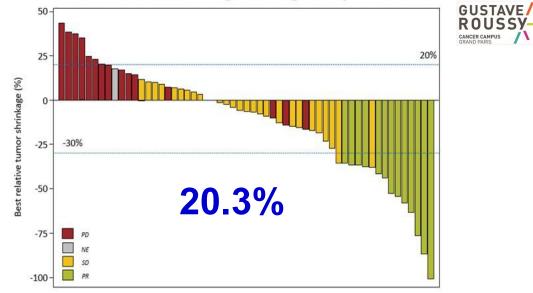
Inclusion restricted with CEACAM5 expression, via IHC testing in most recent archival tissue sample

- High expressor cohort: CEACAM5 at ≥50% at ≥2+ intensity
 - 20% of NSQ NSCLC
- Moderate expressor cohort:
 CEACAM5 between ≥1% and
 <50% at ≥2+ intensity
 - 24% of NSQ NSCLC
- Tumor assessments every
 4 cycles (8 weeks)

Patient characteristics

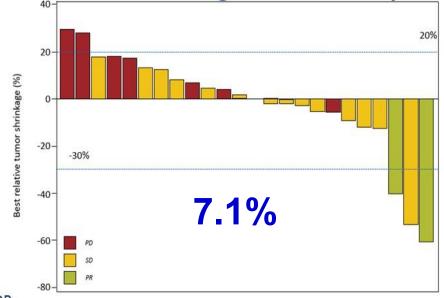
Characteristic	High expressors (n = 64)	Moderate expressors (n = 28)	Total (n = 92)
Age, years			11
Median (range)	61.5 (41-91)	64.5 (31-73)	62.5 (31-91)
Race, n (%)			
White	52 (81.3%)	25 (89.3%)	77 (83.7%)
Asian	12 (18.8%)	3 (10.7%)	15 (16.3%)
Sex, n (%)			
Male	37 (57.8%)	10 (35.7%)	47 (51.1%)
Female	27 (42.2%)	18 (64.3%)	45 (48.9%)
ECOG PS, n (%)*			
0	19 (29.7%)	7 (25.0%)	26 (28.3%)
1	45 (70.3%)	20 (71.4%)	65 (70.7%)
Number of organs involved, n (%)			
≥3	38 (59.4%)	14 (50%)	52 (56.5%)
Number of prior regimens for advanced disease			
Median (range)	3.0 (1-10)	3.0 (1-7)	3.0 (1-10)
Prior treatment, n (%)			
Anti-tubulin	39 (60.9%)	17 (60.7%)	56 (60.9%)
Anti-PD-1/PD-L1	45 (70.3%)	24 (85.7%)	69 (75.0%)

A total of 91 patients had adenocarcinoma; *One patient in the moderate expressor cohort had an ECOG PS of 3.


A.Gazzah et al, ASCO 2020

Best overall response

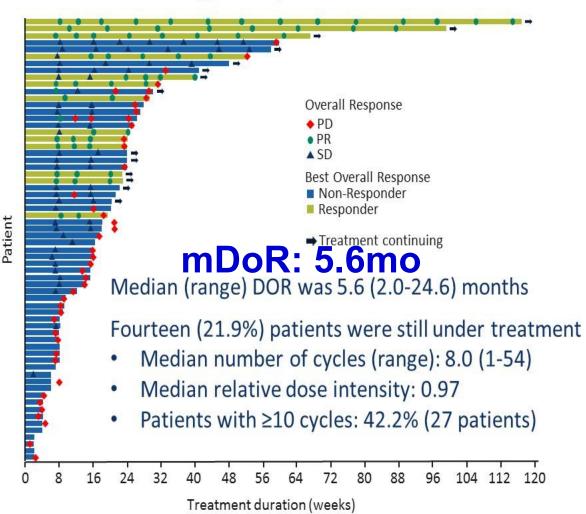
Overall Population


Response, n (%)	High expressors (n = 64)	Moderate expressors (n = 28)
ORR [95% CI]	13 (20.3%) [12.27-31.71]	2 (7.1%) [1.98-22.65]
Confirmed PR	13 (20.3%)	2 (7.1%)
SD	28 (43.8%)	15 (53.6%)
DCR	41 (64.1%)	17 (60.7%)
PD	21 (32.8%)	10 (35.7%)
NE	2 (3.1%)	1 (3.6%)

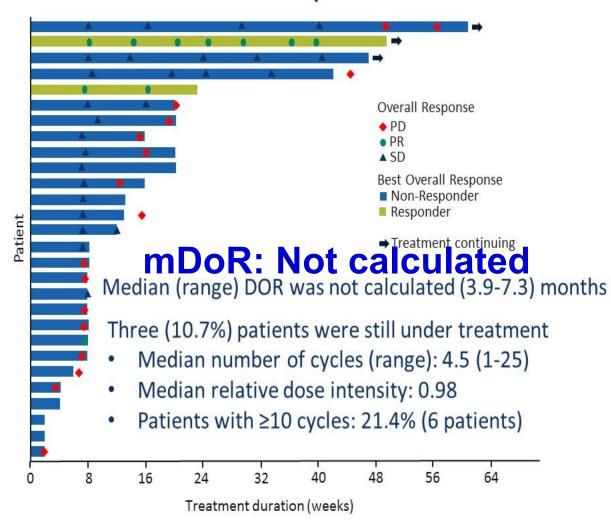
Best Relative Tumor Shrinkage – High Expressor Cohort

Patients treated with SAR408701 (100 mg/m2)

Best Relative Tumor Shrinkage – Moderate Expressor Cohort


Best relative tumor shrinkage: Patients who had unconfirmed PR (>30% decrease) were counted as SD for BOR

Patients treated with SAR408701 (100 mg/m²)


Dose intensity and duration of treatment

Moderate expressors

Treatment-emergent adverse events (TEAEs)

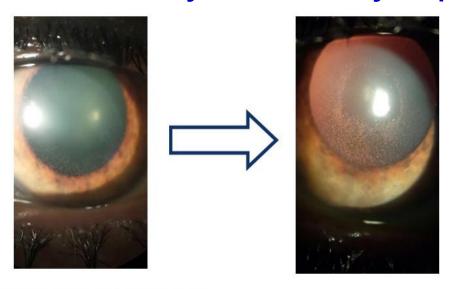
Pooled data of NSCLC cohorts

Preferred Term	SAR408701 100 mg/m ² Q2W (n=92)					
Preferred ferm	All Grades, n (%)	Grade ≥3, n (%)				
Any class, TEAEs ≥ 10%	92 (100%)	47 (51.1%)				
Corneal AE	38%	10.9%				
(Keratopathy/Keratitis)	35 (38.0%)	10 (10.9%)				
Asthenia	34 (37.0%)	4 (4.3%)				
Peripheral neuropathy	27%					
(SMQ*)	25 (27.2%)	1 (1.1%)				
Diarrhea	21 (22.8%)	1 (1.1%)				
Dyspnea	20 (21.7%)	10 (10.9%)				
Decreased appetite	19 (20.7%)	0				
Cough	14 (15.2%)	0				
Nausea	12 (13.0%)	1 (1.1%)				
Arthralgia	10 (10.9%)	0				
Constipation	10 (10.9%)	0				

Laboratory	SAR408701 100 mg/m² Q2W (n=92)					
Abnormalities	All Grades, n					
	(%)	Grade ≥3, n (%)				
Hematological toxicity						
Neutropenia	4 (4.4%)	0				
Anemia	69 (75.8%)	2 (2.2%)				
Thrombocytopenia	11 (12.2%)	0				

Dyspnea was the most frequent serious TEAE, reported in 5 (5.4%) patients, all as a symptom of progressive disease.

^{*}Standardized MedDRA Queries (SMQ): "peripheral neuropathy" (broad + narrow)


Dose modification and ocular events

A.Gazzah et al, ASCO 2020

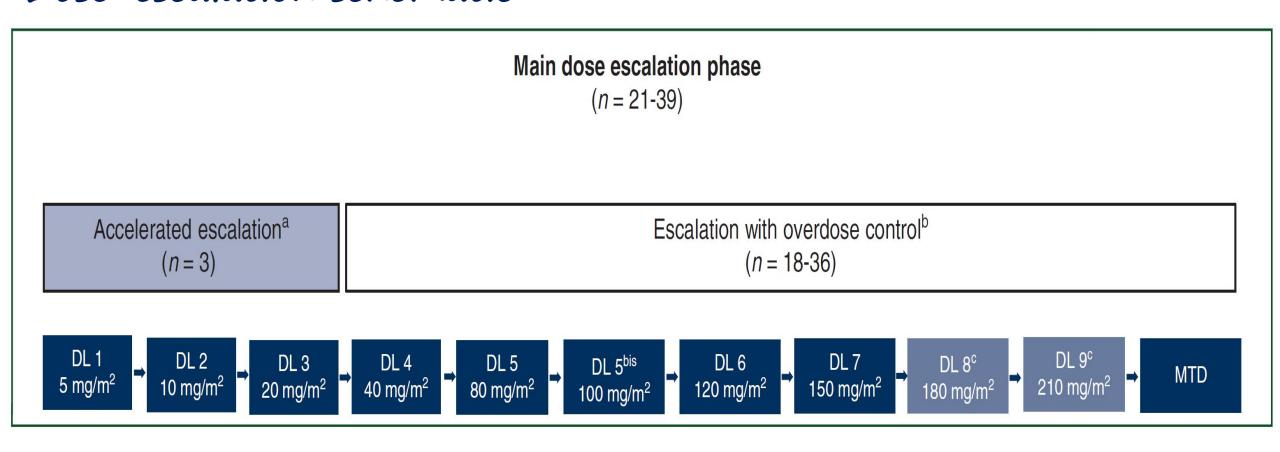
	SAR408701 10	SAR408701 100 mg/m² Q2W					
Ocular Events	(n=	92)					
	Grades 1-2, n (%)	Grade 3, n (%)					
Corneal AE	25 (27.2%) 27 9	% 10 (10.9%) 11 9					
Dose modification							
Keratitis	12 (13.0%)	7 (7.6%)					
Keratopathy	8 (8.7%)	1 (1.1%)					

DM4-induced microcystic corneal dystrophy

A total of 25pts (27%) had corneal TEAEs leading to dose modification

- All 25 patients had at least one dose delay
- Ten patients had at least one dose reduction (10.9%)
- One patient permanently discontinued treatment (1.1%)

Ocular Events:


- Specific ADC-DM4 related events are reversible non-inflammatory deposits starting at the periphery of cornea
- First occurrence within the first 4 cycles of treatment for 28 patients (80%)
- Manageable with dose delay and/or dose reduction
- Median time to recovery was 18.5 (2-82) days
- Primary prophylaxis* is not effective; treatment of an event with topical ophthalmologic corticosteroid when it occurs is recommended

^{*}Primary prophylaxis: Unilaterally administered vasoconstrictive drops before SAR408701 administration, corticosteroid gel for 2 days starting on infusion, and cold compress during infusion.

Tusamitamab ravtansine (SAR408701) in pts with advanced solid tumors: first-in-human dose-escalation study

Dose-escalation schematic

Baseline characteristics by dose level

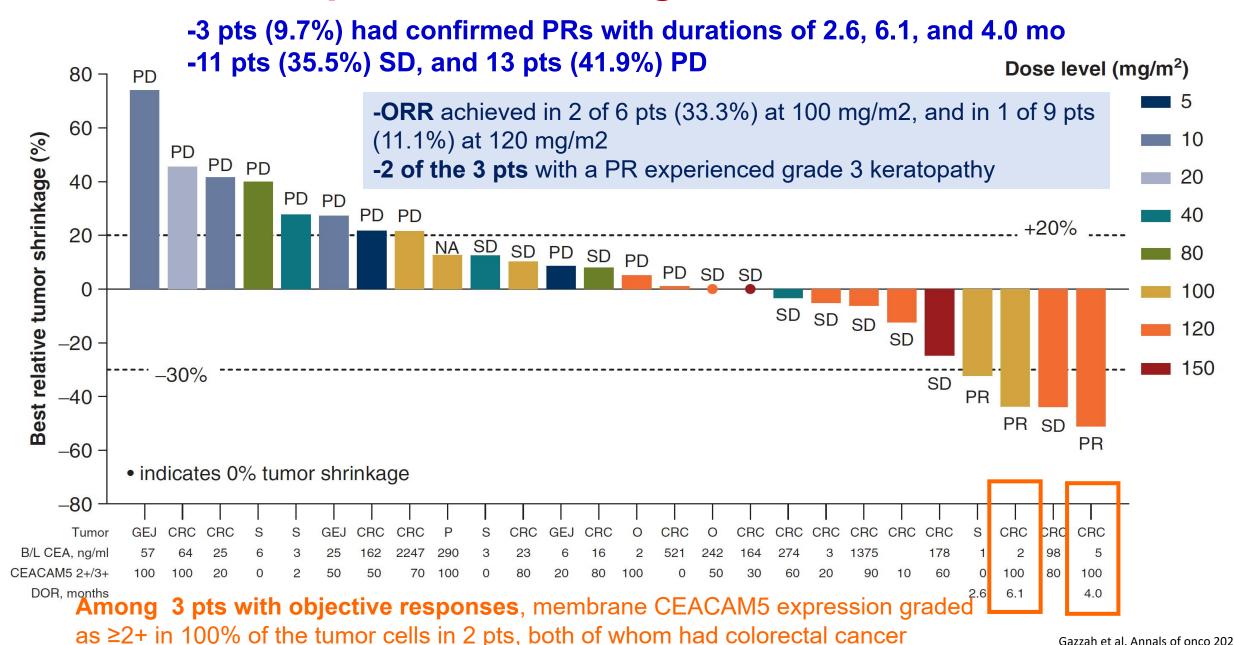
Characteristic							All patients		
	5 (n = 2)	10 $(n = 4^b)$	20 (n = 1)	40 (n = 3)	80 (n = 3)	100 (n = 6)	120 (n = 9)	150 (n = 3)	(N = 31)
Age, years	64 (61, 67)	56.5 (52, 64)	53	52 (49, 74)	57 (44, 60)	61.5 (43, 74)	63 (48, 71)	54 (52, 60)	59 (43, 74)
Male sex, n (%)	2	4	0	0	1	6	5	1	19 (61.3)
ECOG PS score, n (%)									
0	0	2	1	0	2	3	5	1	14 (45.2)
1	2	2	0	3	1	3	4	2	17 (54.8)
Body surface area, m ²	2.1	1.9	1.7	1.4	1.6	1.8	1.9	1.7	1.8
	(2.1, 2.2)	(1.8, 2.1)		(1.3, 1.6)	(1.5, 2.1)	(1.5, 2.0)	(1.7, 2.6)	(1.7, 1.8)	(1.3, 2.6)
Primary tumor location, n (%)									
Colorectal	1	2	1	1	1	3	7	2	18 (58.1)
Stomach	0	0	0	2	2	2	0	1	7 (22.6)
Gastroesophageal junction	1	2	0	0	0	0	0	0	3 (9.7)
Pancreas	0	0	0	0	0	1	0	0	1 (3.2)
Breast	0	0	0	0	0	0	1	0	1 (3.2)
Esophageal	0	0	0	0	0	0	1	0	1 (3.2)
Measurable disease, n (%)	2	3	1	3	2	5	9	2	27 (87.1)
Number of prior regimens, n	2.5 (1, 4)	3 (2, 3)	3	4 (3, 4)	3 (2, 6)	3.5 (2, 5)	3 (2, 9)	4 (2, 4)	3 (1, 9)
Prior anti-tubulin exposure, n (%)	0	1	0	2	1	2	2	1	9 (29.0)
CEACAM5 expression ^a , n (%)									
<50%	1	1	0	2	2	1	3	2	12 (38.7)
50%-79%	1	2	0	1	0	1	1	1	7 (22.6)
≥80%	0	1	1	0	1	4	5	0	12 (38.7)
Circulating CEA level, n (%)									
<5 μg/l	0	0	0	2	1	3	3	1	10 (33.3)
>5 ug/l	2	4	1	1	2	3	5	2	20 (66.7)

Pts with at least one DLT event (DLT-assessable population)

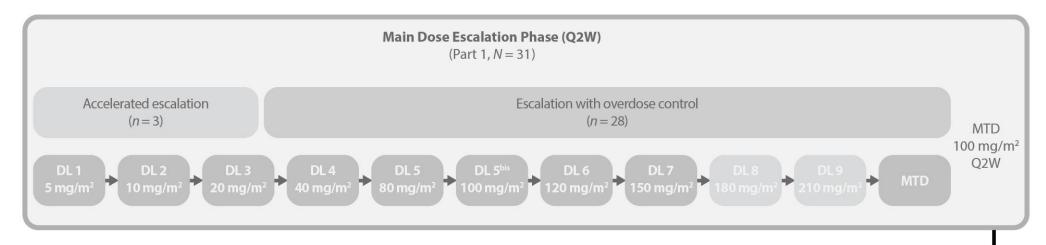
MTD 100mg/m² Q2W

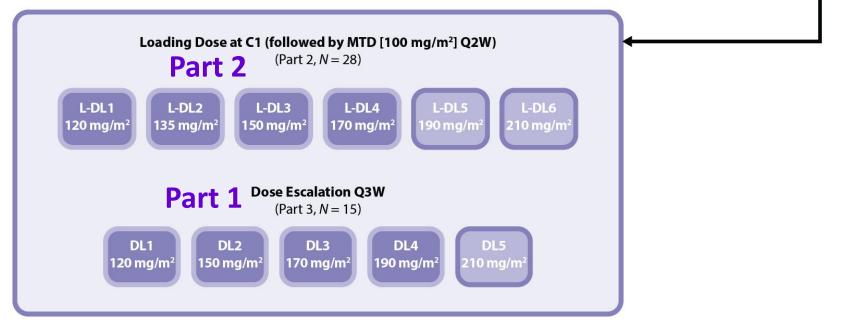
Tusamitamab ravtansine dose level (mg/m²)	Patients treated, <i>n</i>	Patients with DLT/patients assessable for DLT, n/n	DLT event in C1—C2, grade, cycle of occurrence (total cycles)	Event meeting DLT definition occurring after C1—C2, grade, cycle of occurrence (total cycles)	Outcome
5	2	0/1			
10	4	0/3			
20	1	0/1			
40	3	0/3			
80	3	0/3			
100	6	0/6		Keratopathy, G3, C12 (16)	Recovered/resolved
120	9	^{3/8} 3/8pts	Keratopathy, G3, C2 (10)	Punctate keratitis G3, C6 (10)	Recovered/resolved
		5 / 5 5	Keratopathy, G3, C2 (11)		Recovered/resolved
			Keratopathy, G3, C2 (4)		Recovered/resolved
				Hemorrhagic erosive colitis, G4, C5 (5)	Recovered/resolved
				Neutropenia, G4, C5, (5)	Recovered/resolved
150	3	^{2/3} 2/3pts	Keratopathy, G3, C2 (2)		Recovered/resolved
		_/ ~ ~ ~ 	Keratopathy, G3, C2 (4)		Recovered/resolved

The DLT determined to be reversible and manageable dose-related keratopathy The MTD determined to be 100 mg/m2


Treatment-emergent adverse events occurring in ≥10% of pts by dose level (safety population)

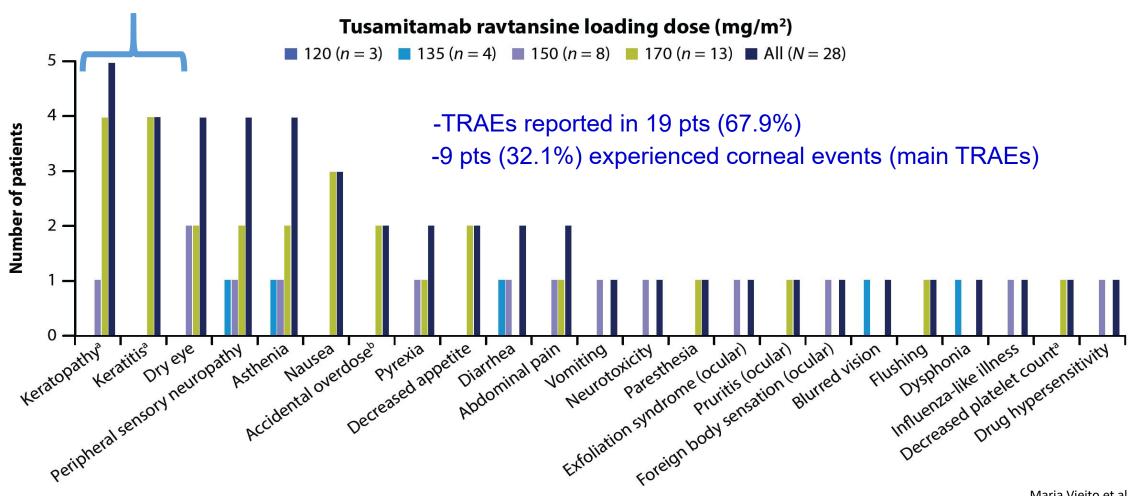
Event	Dose of tusamitamab ravtansine (mg/m²) administered Q2W MTD 100mg/m² Q2W							All patients	
	5 (n = 2)	10 (n = 4)	20 (n = 1)	40 (n = 3)	80 (n = 3)	100 (n = 6)	120 (n = 9)	150 (n = 3)	(N=31)
Asthenia	0	1	1	0	0	2	3	1	8 (25.8%)
Decreased appetite	1	0	0	2	0	2	2	1	8 (25.8%)
Keratopathy	0	0	0	0	0	1	5	2	8 (25.8%)
Nausea	1	0	0	2	0	1	3	1	8 (25.8%)
Diarrhea	0	0	1	1	0	2	3	0	7 (22.6%)
Constipation	0	0	0	2	0	1	3	1	7 (22.6%)
Fatigue	0	0	0	1	1	1	2	1	6 (19.4%)
Abdominal pain	0	0	0	1	0	2	2	0	5 (16.1%)
Paresthesia	0	0	0	1	0	2	0	1	4 (12.9%)
Dry eye	0	0	0	1	0	1	1	1	4 (12.9%)
Vision blurred	0	0	0	1	0	1	1	1	4 (12.9%)
Cough	0	0	0	0	1	1	1	1	4 (12.9%)


Best overall response according to dose level


Dose-escalation study of two different alternative dosing schedules of tusamitamab ravtansine (SAR408701)

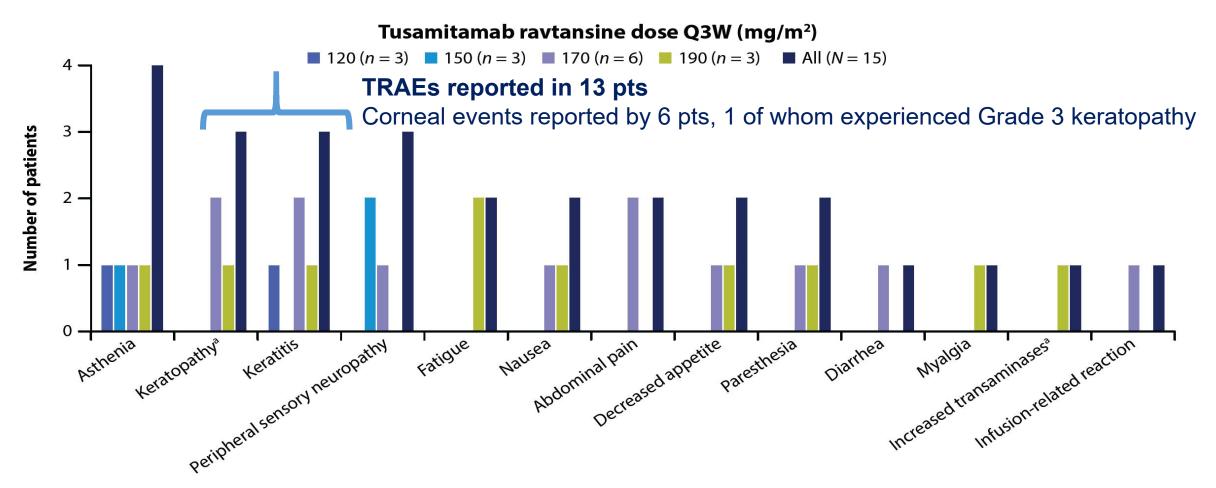
Part 2: escalating loading doses of tusamitamab ravtansine on Day 1, C1, followed by the MTD (100 mg/m²) administered Q2W

Part 3: escalating doses of tusamitamab ravtansine administered Q3W



Treatment-related TAEs in the loading dose part

2 of 9 DLT-evaluable pts experienced a DLT at the 170 mg/m² loading dose level


- 1 pt Grade 2 keratitis during C2 and withdrew from therapy
- 1 pt Grade 2 keratopathy during C2, treatment delay, and then resumed trt at a reduced dose

TRAEs in pts in the Q3W part

- 2 of 3 DLT-evaluable pts experienced a DLT at the 190 mg/m² dose level
- 1 pt Grade 3 increased transaminase levels during C1 and recovered after the drug withdrawn
- 1 pt Grade 2 keratopathy during C1 and recovered after a treatment delay and dose reduction

Conclusions

- ADCs are clinically useful drugs for the treatment of most cancers
- In solid tumors multiple new ADCs are under investigation
- Toxicities of these agents seem to be related to the toxic payload and perhaps the antibody targeting the antigen of interest
- Combination studies are underway now to move some of these drugs to an earlier stage of treatment and not just in the treatment refractory setting