Paradigm Shifts in Presbyopia – Understanding Advances in Topical Treatment Innovations Mile Brujic, OD, FAAO

<u>Summary</u>

This course will cover an overview of the anatomy, pathophysiology, and impact of untreated presbyopia on quality of life. A discussion of treatments for presbyopia will include advances in contact lenses and topical therapeutics.

Learning Objectives

- 1) Understand the pathophysiology of presbyopia
- 2) Discuss contemporary contact lens options
- 3) Understand current and emerging topical therapuetics

<u>Outline</u>

- 1) Pathophysiology
 - a. The near Triad
 - i. Accommodation
 - ii. Convergence
 - iii. Pupil miosis
 - b. Loss of lens elasticity
 - i. Nucleus of lens is softer than cortex in younger ages
 - ii. In the 30's, nucleus and cortex are similar
 - iii. During presbyopia, nucleus is firmer than the surrounding cortex
 - c. Lenticular heat denaturation
 - i. Heat may denature proteins in an accelerated fashion
 - ii. Cataracts develop sooner in locations with warmer climates
 - iii. Presbyopia develops at an earlier age in populations living in warmer climates
- 2) Impact on patient
 - a. Onset is typically between the ages of 40 and 45 years
 - b. 120 million patients affected in the United States
 - c. 1.8 billion patients affected globally
 - d. Loss of near vision ranks highest on the effects on quality of life
 - e. Carries a psychological burden
 - i. Frustation
 - ii. Fear
 - iii. Confusion
 - iv. Depression
 - v. Disruption
- 3) Overview of current options
 - a. Glasses
 - b. Contact lenses

- c. Intraocular lenses
- d. Corneal inlays
- e. Refractive surgery
- 4) Contact lens options
 - a. Single vision distance
 - i. Correct near vision with reading glasses
 - ii. Under correct distance vision
 - b. Monovision
 - i. Select dominant eye
 - ii. Understand difference between sighting and sensory dominance
 - 1. Sighting dominance
 - 2. Sensory dominance
 - a. Patient wears best corrected vision
 - b. Place positive power lens (+1.25 or +1.50) over each eye
 - c. Which ever eye it is over that disrupts distance vision most is dominant eye
 - iii. Under correct non-dominant eye
- 5) Multifocal lenses
 - a. Based on the principle of simultaneous vision
 - b. New options for presbyopia correction options
 - i. Daily disposable options
 - 1. Silicone hydrogel advances
 - ii. Correcting astigmatism and presbyopia
 - 1. New monthly disposable options
 - c. Challenges with simultaneous vision optical alignment
 - i. Patients line of sight is typically nasally offset within the pupil
 - ii. The pupil is typically offset nasally
 - iii. Soft lenses when aligned centrally can create challenges to optical alignment
 - d. Offset Optics
 - i. Visual axis is often not through the center of the pupil
 - ii. Contact lens centration is estimated based on lens centration on the cornea
 - iii. Increased likelihood to have multifocal optics de-centered temporal to patients line of sight
 - 1. OptiSync design
 - a. Soft lens with nasally de-centered optics
 - b. Stabilized with a prism ballasted design
 - 2. Scleral lens options
 - a. Optics are decentered nasally
 - e. Soon to be available option
 - i. APIOC lens
 - ii. Has stabilizing crest that stabilizes the lens with the assistance of the lid wiper
 - iii. Distinct optical zones for distance, intermediate and near focus

- iv. Currently being studied
- 6) New Options
 - a. Pupil modulating agents
 - i. Dilator modulator
 - 1. Brimonidine
 - a. Alpha-2 adrenergic agonist
 - b. Prevents pupil dilation
 - i. Acts on the Alpha-2 receptor on the presynaptic nerve ending to the dilator muscle
 - ii. Prevents release of norepinephrine from the nerve ending
 - iii. Prevents activation of the dilator muscle
 - 2. Phentolamine
 - a. Alpha adrenergic antagonist
 - b. Acts directly on the alpha receptors on the dilator muscle to prevent pupil dilation through inhibition at the receptor
 - ii. Sphincter modulator
 - 1. Pilocarpine
 - a. Cholingeric agonist
 - b. Activates sphincter muscle reducing pupil size
 - c. Has activity on the ciliary muscle as well
 - d. Two currently approved formulations
 - i. 1.25% pilocarpine
 - 1. Approved as once a day or twice a day
 - ii. 0.4% pilocarpine
 - 1. Approved as once a day or twice a day
 - 2. Packaged in unit dose vials
 - 2. Carbachol
 - a. Cholingeric agonist
 - b. Activates sphincter muscle reducing pupil size
 - c. Has activity on the ciliary muscle as well
 - 3. Aceclidine
 - a. Cholingeric agonist
 - b. Activates sphincter muscle reducing pupil size
 - c. Has a known lower level of activity on the ciliary muscle
 - iii. Combination agents
 - 1. Carbachol and brimonidine
 - 2. Pilocarpine and phentolamine
 - 3. Aceclidine and brimonidine
- 7) Case reports
 - a. Demonstrate technologies utilizing case presentations