

Stick the Landing: The Importance of Scleral Lens Alignment

Dr. Karen Lee

The following presentation is part of the Woo U educational initiative. The presenter is supplying the information provided herein. Woo U takes no responsibility for the accuracy of the information, comments, or opinions expressed by the presenter(s). Any reproduction, in whole or in part, of any assets, including but not limited to images, videos, audio, data, research, descriptions, or accounts of the lecture, without the presenter's written consent is prohibited.

WOO WOO UNIVERSITY

WELCOME!

Host: Dr. Ariel Cerenzie

Thank you to Bausch and Lomb for exhibiting at this event.

- For each hour of CE units, attendees must be online for a minimum of 50 minutes
- For a COPE certificate, please fill out the survey link in the chat. Also, the survey link will appear when the webinar ends.
- CE certificates will be delivered by email and sent to ARBO with OE tracker numbers
- We will also display a QR code at the end of the event if you have the OE tracker app on your phone.

Q

Q&A

• CE certificates will be emailed within 4 weeks

Audio Settings

• Ask questions using the zoom on-screen floating panel

Speaker Bio –

Dr. Karen L. Lee is a Clinical Assistant Professor at the University of Houston College of Optometry. Prior to joining the University of Houston, Dr. Lee served as Director of the specialty contact lens clinic at the University of California, San Francisco Ophthalmology department. She is a regular contributor to Contact Lens Spectrum and is currently researching the sterility of scleral lens filling solutions. She is a reviewer for Contact Lens & Anterior Eye and enjoys lecturing both domestically and overseas. Dr. Lee is a proud recipient of the George Mertz Contact Lens Residency Award, Vistakon Clinical Excellence in Contact Lens Patient Care Award, and the Jack Bennett Humanitarian Award. Dr. Lee is a fellow of the American Academy of Optometry, an advisory board member of the Gas Permeable Lens Institute, a member of the Cornea & Contact Lens Section of the AAO, a member of the Ocular Surface Society and a Past President of the Scleral Lens Education Society.

Stick The Landing: The Importance of Scleral Lens Alignment

Karen Lee, OD, FAAO, FSLS

Financial Disclosures

Alcon Bausch & Lomb Essilor Scleral Lens Education Society STAPLE Program Woo University

Scleral Lenses: A Brief Introduction

Lathed with **high Dk gas permeable** plastics to provide crisp optics and maximum breathability. A preservative-free saline reservoir bathes the cornea providing protection and comfort.

Scleral alignment can be difficult! Especially if the scleral shape is rotationally asymmetric.

Fitting scleral lenses is incredibly rewarding and the **Scleral Lens Education Society** is a great **FREE resource**.

Learning Objectives

Improve our understanding of various scleral lens **landing zone presentations** and **associated complications**.

Increase awareness of available **landing zone customizations**.

Practical implementation of **scleral mapping technologies** in practice.

Utilization of landing zone customizations in the quest for scleral alignment.

01

Landing Zone Presentations 02

Potential Complications

Lecture Agenda

03

Landing Zone Customizations 04

Mapping Technologies

05

Clinical Cases

SL Landing Zone

Portion of the scleral lens that aligns to the ocular surface and the scleral conjunctiva.

Can be designed to be rotationally asymmetric or symmetric .

Scleral Shape

Data Acquisition Corneo-scleral Topography

Scleral Shape

Meridian in Degrees

Low amplitude changes in sagittal height over the entire measured 360°

Circumferential scleral shape approximating a Sin 2 curve with a periodicity of 180°

Asymmetric High or Low Points

Circumferential scleral shape where the depressions or elevations were of substantially different depths or heights.

40.7%

Circumferential scleral shape with a single large elevation or depression.

Periodicity different from 180°

Circumferential scleral shape plot demonstrating multiple elevations and depressions over 360°

Single elevation and single depression over 360° thus the periodicity is twice that seen in a regular toric "Roughly 1/3 of eyes could be fit with a **spherical or toric scleral lens**. But 2/3 showed an **irregular pattern**."

Diagnostic Scleral Lens Fitting

Consider toric starting lens!

Dynamic vs Static fit

Edge Alignment

Alignment

-Large and small vessels flow evenly under lens edge -Minimal shadowing

Primary vs Extreme Gaze

-Blanching in extreme gaze is common and might be unavoidable

Anterior Segment OCT

-Conj/sclera bisects the lens edge

Compression

Compression & Blanching

-Lens presses on vessels and impedes blood flow causing areas of blanching

Blood Vessels Involvement

-Large caliber vessels affected with **greater** amounts of compression

Anterior Segment OCT

-Can highlight exact cause/curves causing tightness

Signs and Symptoms

-Rebound injection -Conjunctival staining/impression -Ocular pain/tenderness

Compression

Edge Lift

Edge Lift -Lens edge is flatter than sclera

Shadowing Only -Lens edge is <u>mildly</u> too flat

Breaks in Tear Meniscus -Lens edge is <u>moderately</u> too flat

Signs & Symptoms

-Eyelid discomfort -Reservoir debris/bubbles

Faint area of shadowing at 12 o'clock with occasional breaks in tear meniscus

Toric Marking Correspondence

Minor Imperfections Acceptable

Modifications Needed

Benefits of Quadrant Specific SLs

Clinical Outcomes of Scleral Lens Fitting with a Data-driven, Quadrant-specific Design: Multicenter Review

Melissa Barnett, OD, FAAO,¹* Karen G. Carrasquillo, OD, PhD, FAAO,² and Muriel M. Schornack, OD, FAAO³

Improved vision Decreased MDF Shorter fitting process when utilizing a quadrant-specific fit set

Tear Exchange, Intraocular Pressure, and Wear Characteristics of Quadrant-specific Versus Spherical Haptic Scleral Lenses

Cherie B. Nau, OD, Muriel M. Schornack, OD, Jay W. McLaren, PhD, Alexander P. Hochwald, MS, and Karen G. Carrasquillo, OD, PhD

Improved comfort associate (st

Method: Seven participants (eight eyes) wore each of two lenses for 2 vecks before measurements. We measured visual acuty, contrast sensitive intervention preserve (OP), that reserve elements correct histories. The Decreased tear exchange

eye.¹⁻³ These studies showed that the selera is neither spherical nor has predictable rotational symmetry. The earliest SL designs had spherical landing zones, but increasing appreciation of the nonspherical shape of the selera led to the introduction of SLs with toric, quadrant-specific, or custom (impression-based or imagused) landing zones. More advanced SL designs, which have complerical landing zones, may provide improved fit and visual neutry and thus require less frequent middle improved fit and visual

Advanced Landing Zone Customizations

ube shun

Conjunctival Obstacles

Commonly seen: Pinguecula Pterygium Symblepharon Glaucoma blebs or tube shunts

Photo Courtesy: Karen Lee

Goal: Minimize SL interaction and ocular irritation. Bleb

Avoidance Tactics

Localized vaulting:

• Variation of vault in one area

Notch:

Sculpting and removing portion of lens edge

Truncation

Removal of portion of lens edge

Localized Vault

Fruncation

Measuring Elevations

Lens on
Manual lens centration
<u>Gauge w/slit lamp beam</u>

~1:1 on 10x mag!

Length

Necessary Details

Location (°) Length (mm) Width (mm) Distance from lens edge (mm)

Width

Scleral Topographers

- Each topographer is compatible with specific scleral lens designs
- All scleral shape data is helpful, especially before starting the fitting process

Freeform Scleral Lens

Corneo-scleral topography data driven

Highly dependent on image quality Initial in-office over-refraction required Temporary D/C of habitual SL wear

Highly customized lenses

Easier fitting process Decrease chair time Modifications may still be required

Tricky lens removal?

Tricky Lens Removal?

Parallel planes theory...

Poor plunger adherence...

Channels

Manual creation of tear reservoir bubbles

Channel

Clinical Case

70 yo Hispanic female

Clinical Case

40 yo Hispanic female

Initial Exam Findings

History

Blurry & fluctuating vision with contact lenses at all distances OU.

Keratometry

OD: 48.1@066 / 52.9@156 OS: 53.1@123 / 57.7@033

Autorefraction

OD: 0.00-2.00X106 OS: +0.25-1.25x045

Manifest Refraction

OD: +1.00-6.00x006, 20/25 OS: -6.00-6.00x127, 20/25

Presenting CLs & Entering VAs

OD: 54% Hioxifilcon D / 14.4/8.0/-0.25-4.50X062, 20/30-OS: 54% Hioxifilcon D / 14.4/8.0/-2.00-6.00x126, 20/30-

One of many many attempts!

Corneal Tomography Findings OU

Scleral Elevation Map OS

Initial Observations

"Toric" scleral shape Two conjunctival elevations

Single Elevation: Straight foward

Initial Lens Design Considerations

What are non-negotiables?

Back surface toric landing zone

One localized vault At 352 degrees 3.5 mm tall 1.5 mm wide... 0 mm from lens edge

Temporal Vault Only

Toric Diagnostic Lens

Trial Lens "1"

First lens lost in transit.

Trial Lens "1": Nasal Pinguecula

1 Week Follow-up Visit

Chief Complaint

Decreased VAs Eye gets red Removes and reapplies every 5-6 hours

Midday Fogging Nasal Irritation: injection, staining

Strongly advised against two localized vaults.

Consultation

Incorporate a notch

Trial Lens 2: Nasal Pinguecula in Primary Gaze

Trial Lens #2 Nasal Pinguecula in Lateral Gaze

Without Vault

With Vault

Trial Lens #2

Notch Parameters

At 350 4mm length 3D:

Patient Feedback

Difficult application Lens awareness Less midday fogging

Corneal Molding Technology

Thanks!

Do you have any questions?

kllee3@central.uh.edu kleeoptometry@gmail.com

WOO UNIVERSITY THE CHALLENGES OF THE CORNEA

Dr. Schweitzer

December 1, 2022 5:35 pm – 6:25 pm PST

COPE accredited CE credit

OPIOID UPDATE Symulativ DR. EISSA HANNA COPE accredited CE credit

Scan the QR code for instant OE credit

- The OE Tracker app needs to be downloaded in order to use this QR code.
- Download the 'OE TRACKER' app in the App Store or Google Play store.

COPE Course # 81000-CL Title: *Stick the Landing: Troubleshooting Scleral Lens Alignment*