Supervision: The Rise of Wavefront Guided Scleral Lenses

John D. Gelles, OD

Course Outline:

- 1. Scleral lens use
 - a. SCOPE Study: 74% used for irregular cornea
- 2. Irregular cornea diseases affecting visual quality (2 mins)
 - a. Keratoconus (number 1 indiciation for scleral lenses)
 - b. Pellucid marginal degeneration
 - c. latrogenic ectasia
 - d. Post keratoplasty
 - e. Cornea scars
- 3. Evaluation of visual quality
 - a. Concept of visual quantity vs visual quality
 - i. Aberration vs scatter
 - b. Scatter
 - i. Remove opacity to clear media
 - 1. Cornea scar
 - 2. Cataract
 - 3. Fluid reservoir fogging
 - c. Diagnostics
 - i. Optical scatter
 - 1. How it works: spot quality
 - ii. Desitometry
 - 1. How it works: media clarity
 - d. Aberrations
 - i. Aberration = optical
 - 1. Improve focus
 - ii. Low order aberrations
 - 1. Piston, tilt, defocus, astigmatism

- iii. High order aberrations
 - 1. Coma, trefoil, spherical aberration
- iv. Dependant factors
 - 1. Applegate et al
 - a. Pupil size
 - b. Age
- e. Diagnostics
 - i. Auto refraction
 - 1. Low order aberrations only
 - ii. Wavefront aberrometry
 - 1. All aberrations
 - a. How it works: spot diagram, spacing and defocus
 - b. Optical simulations
 - i. Model eye
 - ii. Normal eye
 - iii. Keratoconus
 - iv. Glasses over keratoconus
 - v. Scleral lens over keratoconus
 - 2. Not specific to any part of the eye
 - a. Measurement of the fully optical system of the eye
- f. Does topography = aberrometry?
 - i. NO
 - 1. Topography can be used to matically calculate aberrations of the cornea based on its shape but this is not true optical aberration
 - ii. If topography is added to aberrometry the source of aberrations can be located
 - 1. Topography + aberrometry = cornea surface can be isolated
 - 2. Tomography + aberrometry = total cornea can be isolated
 - Extended depth tomography + aberrometry = total cornea and total lens can be isolated
- 4. Scleral lens optics
 - a. Traditional optics
 - i. Sphere
 - ii. Cylinder
 - b. Poor visual quality with scleral lenses?
 - i. Lens decentration
 - ii. Posterior corneal contribution
 - c. Advanced optics
 - i. Aspheric optics
 - 1. Spherical aberration only
 - a. Not customized
 - i. Optimized
 - ii. Wavefront guided optics
 - 1. Correct higher order aberation

- a. All aberrations
 - i. Fully customized to the individual
- 2. How do they work?
 - a. Destructive interference
 - i. Similar concept to noise cancelling headphone but with light instead of sound
- 3. Process
 - a. Capture aberration profile
 - i. Wavefront aberrometry over scleral lens
 - b. Mirror aberration profile
 - i. Destructive interference
 - c. Manufacturer mirrored profile onto the scleral lens
 - i. Aberrations cancel out = improved visual quality
- 4. Literature review
 - a. 44 to 64% improvement in HORMS
 - 1-2 line VA improvement
 - b. Marsack et al
 - c. Johns et al

i.

- d. Magnete patent
- e. Gelles et al
 - i. Case study
 - ii. Retrospecitve
 - iii. Prospective
 - iv. Neural adaption
- d. Presbyopia correction
 - i. Over spectacles
 - ii. Blended vision (monovision)
 - 1. Neural adaption
 - iii. Multifocal
 - 1. Induce aberration for increased depth of focus
 - a. Optics placed in the center
 - b. Lens must be centered
 - i. Lens centered = spherical aberration = good outcomes
 - ii. Lens decentration = induced coma = poor outcomes
 - 2. Decentered multifocal optics
 - a. Optics moved on the lens to align with line of sight
 - 3. Wavefront guided
 - a. Custom placement, pupil size optimization
 - 4. Shortcomings
 - a. Static solutions to dynamic problems
 - i. Aberration induction not the same as accommodation